Wikipedia

Resultados de la búsqueda

viernes, 17 de abril de 2015

RESISTENCIA ELECTRONICA


Se le denomina resistencia eléctrica a la igualdad de oposición que tienen los electrones al moverse a través de un conductor. La unidad de resistencia en el Sistema Internacional es el ohmio, que se representa con la letra griega omega (Ω), en honor al físico alemánGeorg Ohm, quien descubrió el principio que ahora lleva su nombre.
Para un conductor de tipo cable, la resistencia está dada por la siguiente fórmula:
 R = \rho { \ell \over S }
Donde ρ es el coeficiente de proporcionalidad o la resistividad del material, \ell es la longitud del cable y S el área de la sección transversal del mismo.
La resistencia de un material depende directamente de dicho coeficiente, además es directamente proporcional a su longitud (aumenta conforme es mayor su longitud) y es inversamente proporcional a su sección transversal (disminuye conforme aumenta su grosor o sección transversal).
Descubierta por Georg Ohm en 1827, la resistencia eléctrica tiene un parecido conceptual con la fricción en la física mecánica. La unidad de la resistencia en el Sistema Internacional de Unidades es el ohmio (Ω). Para su medición, en la práctica existen diversos métodos, entre los que se encuentra el uso de un ohmnímetro. Además, su cantidad recíproca es la conductancia, medida en Siemens.
Además, de acuerdo con la ley de Ohm la resistencia de un material puede definirse como la razón entre la diferencia de potencial eléctrico y la corriente en que atraviesa dicha resistencia, así:1
R = {V \over I}
Donde R es la resistencia en ohmiosV es la diferencia de potencial en voltios e I es la intensidad de corriente en amperios.
También puede decirse que "la intensidad de la corriente que pasa por un conductor es directamente proporcional a la diferencia de potencial e inversamente proporcional a su resistencia"
Según sea la magnitud de esta medida, los materiales se pueden clasificar en conductoresaislantes y semiconductor. Existen además ciertos materiales en los que, en determinadas condiciones de temperatura, aparece un fenómeno denominado superconductividad, en el que el valor de la resistencia es prácticamente nulo.

COMPORTAMIENTO CON CORRIENTE CONTINUA

Una resistencia real en corriente continua (CC) se comporta prácticamente de la misma forma que si fuera ideal, esto es, transformando la energía eléctrica en calor por efecto Joule. La ley de Ohm para corriente continua establece que:
R = {V \over I} \;
donde R es la resistencia en ohmiosV es la diferencia de potencial en voltios e I es la intensidad de corriente en amperios.

COMPORTAMIENTO CON CORRIENTE ALTERNA

Figura 3. Diagramafasorial.
Como se ha comentado anteriormente, una resistencia real muestra un comportamiento diferente del que se observaría en una resistencia ideal si la intensidad que la atraviesa no es continua. En el caso de que la señal aplicada sea senoidal, corriente alterna (CA), a bajas frecuencias se observa que una resistencia real se comportará de forma muy similar a como lo haría en CC, siendo despreciables las diferencias. En altas frecuencias el comportamiento es diferente, aumentando en la medida en la que aumenta la frecuencia aplicada, lo que se explica fundamentalmente por los efectos inductivos que producen los materiales que conforman la resistencia real.
Por ejemplo, en una resistencia de carbón los efectos inductivos solo provienen de los propios terminales de conexión del dispositivo mientras que en una resistencia de tipo bobinado estos efectos se incrementan por el devanado de hilo resistivo alrededor del soporte cerámico, además de aparecer una cierta componente capacitiva si la frecuencia es especialmente elevada. En estos casos, para analizar los circuitos, la resistencia real se sustituye por una asociación serie formada por una resistencia ideal y por una bobina también ideal, aunque a veces también se les puede añadir un pequeño condensador ideal en paralelo con dicha asociación serie. En los conductores, además, aparecen otros efectos entre los que cabe destacar el efecto pelicular.

Asociación de resistencias


Resistencia equivalente[editar]


Asociación en serie
[editar]Se denomina resistencia equivalente de una asociación respecto de dos puntos A y B, a aquella que conectada a la misma diferencia de potencial, UAB, demanda la misma intensidadI (ver figura 4). Esto significa que ante las mismas condiciones, la asociación y su resistencia equivalente disipan la misma potencia.
Dos o más resistencias se encuentran conectadas en serie cuando al aplicar al conjunto una diferencia de potencial, todas ellas son recorridas por la misma corriente.
Para determinar la resistencia equivalente de una asociación serie imaginaremos que ambas, figuras 4a) y 4c), están conectadas a la misma diferencia de potencial, UAB. Si aplicamos la segunda ley de Kirchhoff a la asociación en serie tendremos:
U_{AB} = U_1 + U_2 +...+ U_n \,
Aplicando la ley de Ohm:
U_{AB} = IR_1 + IR_2 +...+ IR_n = I(R_1 + R_2 +...+ R_n) \,
En la resistencia equivalente:
U_{AB} = IR_{AB} \,
Finalmente, igualando ambas ecuaciones se obtiene que:
IR_{AB} = I(R_1 + R_2 +...+ R_n) \,
Y eliminando la intensidad:
R_{AB} = R_1 + R_2 +...+ R_n = \sum_{k=1}^n R_k
Por lo tanto, la resistencia equivalente a n resistencias montadas en serie es igual a la sumatoria de dichas resistencias.

Asociación en paralelo

Dos o más resistencias se encuentran en paralelo cuando tienen dos terminales comunes de modo que al aplicar al conjunto una diferencia de potencial, UAB, todas las resistencias tienen la misma caída de tensión, UAB.
Para determinar la resistencia equivalente de una asociación en paralelo imaginaremos que ambas, figuras 4b) y 4c), están conectadas a la misma diferencia de potencial mencionada, UAB, lo que originará una misma demanda de corriente eléctrica, I. Esta corriente se repartirá en la asociación por cada una de sus resistencias de acuerdo con la primera ley de Kirchhoff:
{I} = {I_1} + {I_2} + ... + {I_n} \,
Aplicando la ley de Ohm:
{I} = {U_{AB} \over R_1} + {U_{AB} \over R_2} + ... + {U_{AB} \over R_n} = U_{AB}\left({1 \over R_1} + {1 \over R_2} + ... + {1 \over R_n}\right) \,
En la resistencia equivalente se cumple:
I=U_{AB}/R_{AB} \,
Igualando ambas ecuaciones y eliminando la tensión UAB:
{1 \over R_{AB}} = {1 \over R_1} + {1 \over R_2} + ... + {1 \over R_n}
De donde:
R_{AB} = {1 \over \sum_{k=1}^n {1 \over R_k} }

Asociación mixta


A veces una asociación mixta es necesaria ponerla en modo texto. Para ello se utilizan los símbolos "+" y "//" para designar las asociaciones serie y paralelo respectivamente. Así con
 (R1 + R2) se indica que R1 y R2 están en serie mientras que con (R1//R2) que están en paralelo. De acuerdo con ello, las asociaciones de la figura 5 se pondrían del siguiente modo:En una asociación mixta podemos encontrarnos conjuntos de resistencias en serie con conjuntos de resistencias en paralelo. En la figura 5 pueden observarse tres ejemplos de asociaciones mixtas con cuatro resistencias.
a) (R1//R2)+(R3//R4)
b) (R1+R3)//(R2+R4)
c) ((R1+R2)//R3)+R4

No hay comentarios:

Publicar un comentario